
Kotlin
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

© 2024 Arthur Hoskey. All
rights reserved.

Today’s Lecture

 Kotlin Basics

© 2024 Arthur Hoskey. All
rights reserved.

Kotlin

Kotlin

 Full programming language.

 Kotlin runs on a Java Virtual Machine (JVM).

 Kotlin can be used to develop Android programs.

 Getting started link:

https://kotlinlang.org/docs/tutorials/getting-started.html

© 2024 Arthur Hoskey. All
rights reserved.

https://kotlinlang.org/docs/tutorials/getting-started.html

IntelliJ IDE

IntelliJ IDE

 IntelliJ can be used to develop in Kotlin.

 Good to learn the basics of the language (instead of
trying to write Android programs).

 IntelliJ Community Edition is free to use.

New Kotlin Project in IntelliJ

 Go to File|New|Project in Menu.

 New Project Dialog
◦ Choose Kotlin in the left pane

◦ Choose Kotlin/JVM in the right pane

© 2024 Arthur Hoskey. All
rights reserved.

Program Entry Point

Program Entry Point

 All Kotlin programs start from main.

fun main()

{

 println("Hello World!")

}

© 2024 Arthur Hoskey. All
rights reserved.

fun stands for function

println is used to print

data to the console

Running Kotlin Program in IntelliJ

Running Kotlin Program in IntelliJ

 Create a new Console Application project.

 The project should come with a main function already there.

 If the Run|Run menu item is grayed out, right click main in
the code to bring up a context menu. Choose the Run menu
option (there will be a green triangle next to Run). Doing this
will cause IntelliJ to generate a class to hold the main method
behind the scenes. You can open the edit configuration to see
the name of the class it created. The Run|Run menu item will
no longer be grayed out.

fun main()

{

 println("Hello World!")

}

© 2024 Arthur Hoskey. All
rights reserved.

Comments

Comments

 Similar to C++ and Java

 Use // for a single line comment

// This is a Kotlin single line comment

 Use /* */ combination for multiline comments

/*

This is

a multiline

comment

*/

© 2024 Arthur Hoskey. All
rights reserved.

Basic Datatypes

Datatypes

 Int – Used for integers

 Double – Used for floating-point numbers

 Boolean – Used for true/false values

 String – Used for string data

© 2024 Arthur Hoskey. All
rights reserved.

Variables

Variables

 Int – Used for integers

var x:Int

 Double variable

var y:Double

 Boolean variable

var z:Boolean

 String variable

var z:String

© 2024 Arthur Hoskey. All
rights reserved.

var

keyword

variable

name

datatype

val – Read Only Local Variables

val - Read Only Local Variables

 val – Used to make a read only local variable.

val x = 10

x = 20

© 2024 Arthur Hoskey. All
rights reserved.

val

keyword

variable

name

Value to put in the

variable (will cause

the data type to be Int)

Once a val is assigned to it

cannot be changed (x already

has the value 10)

Type Inference

Type Inference

 You can leave the datatype out of a declaration if you
initialize the variable with a value.

 The datatype will be inferred by the value the variable
is being set to.

 In the following line variable a has a String datatype
because it is being assigned a string literal:

var a = "abc"

© 2024 Arthur Hoskey. All
rights reserved.

var

keyword

variable

name

Double quotes is for a string

literal

If (statement)

if (statement)

 If can be used as a normal statement.

 Here is an example:

var sales = 150

var goodSales : Boolean

if (sales > 100)

{

 goodSales = true

}

else

{

 goodSales = false

}

© 2024 Arthur Hoskey. All
rights reserved.

The if statement is

similar to other

languages

If (expression)

if (expression)

 If can be used as an expression (evaluates to a value).

 Here is an example:

var sales = 150

var goodSales : Boolean

goodSales = if (sales > 100)

{

 true

}

else

{

 false

}

© 2024 Arthur Hoskey. All
rights reserved.

Set the variable equal to the

result of the if expression

The last statement in the block that runs is what

the if evaluates to. The goodSales variable gets

the value true if sales > 100 and false otherwise.

When (statement)

when (statement)

 when can be used as a normal statement.

 Here is an example:

var grade = "A"

var description : String

when (grade) {

 "A" -> {

 description = "Excellent"

 }

 "B" -> description = "Good"

 "C" -> description = "Average"

 else -> {

 description = "Needs improvement"

 }

}

© 2024 Arthur Hoskey. All
rights reserved.

Similar to switch

in Java and C++

Can use a block { } for

the body of the branch

Can use a single statement

as the body of the branch

If no branches match, then

the else branch is executed

When (expression)

when (expression)

 when can be used as an expression (evaluates to
a value).

 Here is an example:

var grade = "A"

var description = when (grade) {

 "A" -> "Excellent"

 "B" -> "Good"

 "C" -> "Average"

 else -> "Needs improvement"

}

© 2024 Arthur Hoskey. All
rights reserved.

Set the variable equal to the

result of the when expression

For

for Statement

 The following for loop prints the numbers 0 to 4.

for (i in 0..4)

{

println(i)

}

© 2024 Arthur Hoskey. All
rights reserved.

Loop control

variable

Starting value

Ending value

While

while Statement

 The following for loop prints the numbers 0 to 4.

var i = 0

while (i < 5) {

 println(i)

 i++

}

© 2024 Arthur Hoskey. All
rights reserved.

Loop control

variable

Test condition

for loop

Function

Function

 Function with no parameters and no return value that
declares a local variable.

 fun myFunction()

 {

 var s = "abc"

 }

© 2024 Arthur Hoskey. All
rights reserved.

Use fun keyword to

define a function Function name

Local variable

Calling a Function

Calling a Function

 Here is code to define and call a function.

fun main(args: Array<String>) {

 myFunction()

}

fun myFunction()

{

 println("myFunction ran")

 var s = "abc"

}

© 2024 Arthur Hoskey. All
rights reserved.

Call myFunction from main

Define

myFunction

Function - Parameters

Function - Parameters

 Function with one parameter and no return value.

fun myFunction2(x : Int)

{

}

 Function with two parameters and no return value

fun myFunction3(x: Int, s : String)

{

}

© 2024 Arthur Hoskey. All
rights reserved.

Parameter name is x Parameter type is Int

Put a colon between

the parameter name

and type

Function – Return Value

Function – Return Value

 Function with no parameters and an Int type return value.

fun myFunction4() : Int

{

 var num = 100

 return num

}

fun main(args: Array<String>) {

 var retVal = myFunction4()

}

© 2024 Arthur Hoskey. All
rights reserved.

Put a colon after

parenthesis
Function return type

Use return statement

to return a value

Call function and put return

value in the retVal variable

Function Reference in Variable

Function Reference in Variable

 Function reference – Stores the address of a function.

 The test function below is located at address 2800.

 The fv variable below is a function reference. It is storing the
starting address of a function (the test function in this example).

var x = 555

var y = 777

var fv = ::test

fun test() {

 println("test ran")

}

© 2024 Arthur Hoskey. All
rights reserved.

Memory Location Data at Location

1000 var x, 555

1004 var y, 777

1008 var fv, 2800

Other locations…

Other locations…

2800 fun test {
println("testran) }

Get address of

function test

Function Reference in Variable

Function Reference in Variable

 Function references can be stored in variables.

 :: operation – Creates a reference.

var fv = ::test

fv()

fun test() {

 println("test ran")

}

© 2024 Arthur Hoskey. All
rights reserved.

Put a reference for the test function in the fv variable. Do

not use () because the test method is not being executed.

:: gets a reference to the test function. The :: operator will return the

address of test. That value is then assigned to the fv variable.

fv has address 2800 in it. Call whatever function is

at address 2800 (test function in this example).

Memory Location Data at Location

1008 var fv, 2800

Other locations…

Other locations…

2800 fun test {
println("test ran") }

Function with Parameters
Reference in Variable

Function With Parameters Reference in Variable

 Variables can store references to functions that have parameters.

var fv = ::testWithParms

fv("abc", 100)

fun testWithParms(s: String, num: Int) {

 println(s)

 println(num)

}

© 2024 Arthur Hoskey. All
rights reserved.

Put a reference for test function in the fv

variable (do not use () here)

:: creates reference of testWithParms function

Call test function using the variable and

pass in arguments for the parameters

Lambda Expression

Lambda Expression

 A lambda expression is an anonymous function.

 The function body is in memory, but it has no name (it's anonymous).

 The address of this function is only referred to in the variable. No other
part of the program knows of it.

val anonFunc = {

 println("Anonymous method ran")

}

anonFunc()

© 2024 Arthur Hoskey. All
rights reserved.

{ is the start of the anonymous function body

} is the end of the

anonymous

function body

Calls the function at location

9600 (9600 is the address

stored in anonFunc)

Memory Location Data at Location

7000 val anonFunc, 9600

Other locations…

Other locations…

9600 {
println("Anonymous
method ran") }

Review – Declaring and
Initializing Variables

Review - Declaring and Initializing Variables

 Use val or var.

 This should be followed by a variable name.

 Then a colon comes next.

 This is followed by a data type.

 An assignment operator comes after that (=).

 The data to put in the variable is last.

 For example:

 val x: Int = 555

© 2024 Arthur Hoskey. All
rights reserved.

Variable

Name

Data

Type

Data to put in

variable Name

Review – Declaring and
Initializing Variables

Review - Declaring and Initializing Variables

 Here are other examples:

val s: String = "I love Android"

val e: Employee = Employee()

val z: Double = (10.0*20.0)/2.0

© 2024 Arthur Hoskey. All
rights reserved.

Employee() creates a new instance of

Employee and returns the address of that

instance. The address is then stored in e.

Variable

Name

Data

Type

Data to put in

variable

Variable

Name

Data

Type

Data to put in

variable

Variable

Name

Data

Type

Data to put in

variable

The expression is evaluated first

then the result is put in the variable

Anonymous Function Format

Anonymous Function Format

 General format for an anonymous function with parameters:

val afm: (Function Parameters) -> Return Type =

{

 Argument List

 ->

 Method Body

}

© 2024 Arthur Hoskey. All
rights reserved.

Variable

Name

The data type for an anonymous function

is the function parameters followed by the

lambda (->) followed by the return type

Argument List specifies all parameters

w/types. The types in the argument list should

match the types in the function parameters.

Code for the body of the

anonymous function

Lambda separates the

argument list and the

method body

Anonymous Function with One
Parameter

Anonymous Function with One Parameter

 Anonymous functions can take parameters.

 Need to specify the parameters before the function body.

 Unit means no return type (like void in other languages).

val afm: (String) -> Unit = { m:String ->

 println("Message: ")

 println(m)

}

afm("Hello")

© 2024 Arthur Hoskey. All
rights reserved.

Give parameter a name to

use in the function body

Specify parameter and return types

of function

(one string parm and no return type)

Body of method

appears after the

arrow (->)

Call function using variable

Anonymous Function with Two
Parameters and Return Value

Anonymous Function with Two Parameters and Return Value

 Need to specify parameters and return type before the function
body.

val afm: (String, Int) -> Int = { s:String, i:Int ->

 println(s)

 println(i)

 i+5

}

val result = afm("abc", 100)

println(result)

© 2024 Arthur Hoskey. All
rights reserved.

Give parameters names to

use in the function body

Takes String and Int

parms. Returns an Int.

Return value. The last expression in the

body is the value that gets returned .

Call function using variable

Prints 105

Pass a Function Reference as a
Parameter

Pass a Function Reference as a Parameter

 Function references can be passed as parameters to functions.

fun testFuncAsParm(fp: (Int)->Unit)

{

 fp(333)

}

val anonFunc : (Int)->Unit = { num: Int -> println(num) }

testFuncAsParm(anonFunc)

© 2024 Arthur Hoskey. All
rights reserved.

fp is the parameter name

for the function

Format of the

function parameter

Call passed in function by using

its parameter name

Create an

anonymous

function

Pass the function reference

(anonFunc) as a parameter

anonFunc holds the

anonymous function

Pass Function Reference
Parameter as a Trailing Lambda

Pass Function Reference Parameter as a Trailing Lambda

 Kotlin has special syntax for passing in a function reference that is the
last parameter in a function header.

 You can add a lambda expression right after the function header instead
of passing it inside the () parenthesis.

fun testFuncAsParm(fp: (Int)->Unit) {

 fp(333)

}

testFuncAsParm({ num: Int -> println(num) })

testFuncAsParm() { num: Int ->

println(num)

}

© 2024 Arthur Hoskey. All
rights reserved.

Function definition that has a function

reference as the last parameter (the

only parameter in this case)

Function call with trailing lambda. The { } block

after the function header is a trailing lambda. This

block is actually being passed as a parameter.

Normal function call

passing in a lambda

(the lambda is inside

the parenthesis)

Class Definition

Class Definition

 Each class should be in its own file.

 The name of the file should be the name of the class
followed by a .kt extension

 The class below should be in a class named Person.kt

 A property is a field+get/set (the field is the variable).

 Default visibility is public.

class Person {

 var first = ""

}

© 2024 Arthur Hoskey. All
rights reserved.

Property (automatically

has get/set)

Use the class keyword

to define a class

Create and Use a Class Instancce

Create and Use a Class Instance

 A property is a field+get/set (the field is the variable).

 Default visibility is public.

class Person {

 var first = ""

}

fun myFunction()

{

 var p = Person()

 p.first = "Arthur"

 println(p.first)

}

© 2024 Arthur Hoskey. All
rights reserved.

Class definition

Create an instance (no new keyword)

Calls set on the first property

Calls get on the first property

Class - Access Modifiers

Class - Access Modifiers

 public – Accessible from anywhere.

 private – Accessible from within the class.

 protected – Same as private except derived classes also
have access.

 public is the default access modifier in Kotlin.

© 2024 Arthur Hoskey. All
rights reserved.

Class - lateinit

Class - lateinit

 Use lateinit when a member property will be initialized later
on.

 In the code below, first will be initialized when myFunction
is called.

class Person {

private lateinit var first : String

 fun myFunction()

 {

 first = "Rose"

 }

}

© 2024 Arthur Hoskey. All
rights reserved.

Initialize the member

when myFunction runs

lateinit - Initialization

does not take place at

the declaration

Class – Primary Constructor

Class – Primary Constructor

 Part of the class header.

 The primary constructor does not have a normal function body.

 Use the constructor keyword to define it.

 Primary constructor parameters become member variables of the class.

 Note: The constructor keyword is optional if you are not using annotations
or visibility modifiers.

class Person constructor(var first: String)

{

}

fun main(args: Array<String>) {

 var p = Person("Ali")

 println("p.first = " + p.first)

}

© 2024 Arthur Hoskey. All
rights reserved.

This primary constructor

is defined to take one

string parameter

Call primary constructor passing

in the string "Ali". This will set

the first member variable of

Person to "Ali".

first will be a member variable of

the class since it is in the

primary constructor

Class – init Block

Class – init Block

 You can add more initialization code to a class using an init
block.

 The init block runs after the constructor.

class Person constructor(var first: String)

{

 init {

 // More initialization code can go here…

 }

}

© 2024 Arthur Hoskey. All
rights reserved.

init block (code for the

primary constructor)

Primary constructor

goes in the header

Class with Two Constructors

Class with Two Constructors

 You can have more than one constructor in a class.

class Person constructor(var first: String)

{

 lateinit var last : String

 constructor(first: String, last: String) : this(first)

 {

 println("Other constructor ran")

 this.last = last

 }

 init {

 println("init block ran")

 }

}

© 2024 Arthur Hoskey. All
rights reserved.

Primary constructor is

in the header

Other constructor

function definition

The other construction must

call the primary constructor.

this(first) calls the primary

constructor and initializes

first. The primary constructor

will run before the secondary

constructor runs.

Initialize last

data Class Definition

data Class Definition

 data class – Used to just store data values.

 If you need to write member methods with specific
functionality then use a normal class instead.

 The primary constructor should have at least one member
variable. Most of the time you will put all member variables
in the primary constructor for a data class.

data class Person (

 var first: String,

 var last: String

)

© 2024 Arthur Hoskey. All
rights reserved.

Two member variables in this data

class. They are both declared in

the primary constructor.

Use the data keyword in

the class header

Interface - Definition

Interface - Definition

 Use the interface keyword.

 Interfaces cannot store a "state" (no member variables).

 Functions can have an implementation.

interface MyInterface

{

 fun myFunction1()

 fun myFunction2() {

 // Code goes here…

 }

}

© 2024 Arthur Hoskey. All
rights reserved.

Use interface keyword

myFunction1 is abstract (no function body)

and must be overridden in any classes that

implement this interface

myFunction2 has a default implementation.

Classes that implement this interface are

NOT required to override this function

(they can override if they want to).

Interface - Implementation

Interface - Implementation

 Use : to have a class implement an interface.

class MyClass : MyInterface {

 override fun myFunction1() {

 // Code goes here...

 }

 override fun myFunction2() {

 // Code goes here...

 }

}

© 2024 Arthur Hoskey. All
rights reserved.

MyClass implements

MyInterface

myFunction1 MUST be overridden

because it is abstract in the

interface definition

myFunction2 is overridden but it does not

have to be since the interface has a default

implementation (default implementation of

myFunction2 shown on previous slide)

Array of Int

Array of Int

 Array of int.

//Declare and set values

var x = IntArray(3)

x[0] = 10

x[1] = 20

x[2] = 30

x.forEach(System.out::println)

// Declare with data

var y : Array<Int> = arrayOf(1, 2, 3, 4, 5)

y.forEach(System.out::println)

© 2024 Arthur Hoskey. All
rights reserved.

Array of String

Array of String

 Array of String.

// Declare with data

var a : Array<String> = arrayOf("Mon", "Tues", "Wed")

a.forEach(System.out::println)

© 2024 Arthur Hoskey. All
rights reserved.

List of Int

List of Int

 List of Int.

// Declare with data

var numList : List<Int> = listOf(100, 200, 300)

numList.forEach(System.out::println)

var numList2 = listOf(400, 500, 600)

numList2.forEach(System.out::println)

Note: The following does not add to the list, it creates a whole new list
instance with the original values and 400 in it (very inefficient):

numList += 400

© 2024 Arthur Hoskey. All
rights reserved.

This list cannot be added to after

initialization (need to define a

mutable list to add other items

after initialization)

You do not have to explicitly state the interface

type. The type List<int> will be inferred.

Mutable List of Int

MutableList of Int

 A MutableList of Int allows you to add data items after
initialization.

// Declare with data

var numList : MutableList<Int> = mutableListOf(100, 200, 300)

var otherNumList : MutableList<Int> = mutableListOf()

numList.forEach(System.out::println)

numList.add(888)

numList.forEach(System.out::println)

Note: Can infer the type instead using the following:

var numList = mutableListOf(100, 200, 300)

© 2024 Arthur Hoskey. All
rights reserved.

MutableList allows items to be

added after initialization

Add 888 to the list

Creates an

empty list

instead

Initializes with

100, 200, 300

Mutable List of String

MutableList of String

 A MutableList of Int allows you to add data items after
initialization.

// Declare with data

var stringList = mutableListOf("Mon", "Tues", "Wed")

stringList.forEach(System.out::println)

stringList.add("Thurs")

stringList.forEach(System.out::println)

© 2024 Arthur Hoskey. All
rights reserved.

MutableList allows items to be

added after initialization

Add Thurs to the list

Coroutine

Coroutine

 An instance of a suspendable computation.

 Similar to a thread in that it runs code currently with the other
code in the program.

 A coroutine is not associated with a particular thread (the
same coroutine can be run on different threads).

 A coroutine can suspend its execution on one thread and
complete its execution on another thread.

 Taken from the following link:

https://kotlinlang.org/docs/coroutines-basics.html

© 2024 Arthur Hoskey. All
rights reserved.

https://kotlinlang.org/docs/coroutines-basics.html

Coroutine Example

Coroutine Example

 An instance of a suspendable computation.

fun normalMethod() {

 runBlocking { // this: CoroutineScope

 launch { // launch a new coroutine and continue

 delay(1000L) // Non-blocking delay for 1 second

 Log.d("MY_DEBUG", "2") // print after delay

 }

 Log.d("MY_DEBUG", "1") // Runs concurrently with launch block

 }

 Log.d("MY_DEBUG", "3") // Runs after runBlock finishes

}

© 2024 Arthur Hoskey. All
rights reserved.

runBlocking. Connects coroutine code with non-coroutine

code. The thread that executes a runBlock will block or stop

until all code in that block completes.

launch. Coroutine builder that launches a

new coroutine. Code inside launch runs

concurrently with non-coroutine code.

Coroutine

code

(inside

runblocking)

Output

1

2

3

Code outside

coroutine

(outside

runblocking)

End of Slides

 End of Slides

© 2024 Arthur Hoskey. All
rights reserved.

	Slide 1: Kotlin
	Slide 2: Today’s Lecture
	Slide 3: Kotlin
	Slide 4: IntelliJ IDE
	Slide 5: Program Entry Point
	Slide 6: Running Kotlin Program in IntelliJ
	Slide 7: Comments
	Slide 8: Basic Datatypes
	Slide 9: Variables
	Slide 10: val – Read Only Local Variables
	Slide 11: Type Inference
	Slide 12: If (statement)
	Slide 13: If (expression)
	Slide 14: When (statement)
	Slide 15: When (expression)
	Slide 16: For
	Slide 17: While
	Slide 18: Function
	Slide 19: Calling a Function
	Slide 20: Function - Parameters
	Slide 21: Function – Return Value
	Slide 22: Function Reference in Variable
	Slide 23: Function Reference in Variable
	Slide 24: Function with Parameters Reference in Variable
	Slide 25: Lambda Expression
	Slide 26: Review – Declaring and Initializing Variables
	Slide 27: Review – Declaring and Initializing Variables
	Slide 28: Anonymous Function Format
	Slide 29: Anonymous Function with One Parameter
	Slide 30: Anonymous Function with Two Parameters and Return Value
	Slide 31: Pass a Function Reference as a Parameter
	Slide 32: Pass Function Reference Parameter as a Trailing Lambda
	Slide 33: Class Definition
	Slide 34: Create and Use a Class Instancce
	Slide 35: Class - Access Modifiers
	Slide 36: Class - lateinit
	Slide 37: Class – Primary Constructor
	Slide 38: Class – init Block
	Slide 39: Class with Two Constructors
	Slide 40: data Class Definition
	Slide 41: Interface - Definition
	Slide 42: Interface - Implementation
	Slide 43: Array of Int
	Slide 44: Array of String
	Slide 45: List of Int
	Slide 46: Mutable List of Int
	Slide 47: Mutable List of String
	Slide 48: Coroutine
	Slide 49: Coroutine Example
	Slide 50: End of Slides

